

Green IT and Real Estate Convergence

November 9, 2010

Joel A. Manfredo

Chief Technology Officer County of Orange, California

Agenda: "Green IT and Real Estate Convergence"

What is Green IT?

•Definition and Taxonomy

- ·Carbon Emissions and Top "Green" Corporate Purchasers (Electric)
- $\cdot \textbf{Green}$ IT Technology Trends and the County of Orange

Macroeconomic views

- •Sustainability Drivers
- •Energy Star
- $\textbf{\cdot Research: BCS, McKinsey, US Energy Information Administration}$
- •Smart Building Potential and an Example

Buildings and Data Centers

- **•USGBC LEED and Energy Star**
- ·Clueless CIOs?
- ·Data Centers: Measures, Opportunities and Roadblocks

Real Estate and IT Convergence

- •Building Information Network
- Market Evidence and Example

Questions & Answers

Envision a Greener IT department

A Reference

What is Green IT?

Green It: Definition

Green computing

From Wikipedia, the free encyclopedia (Redirected from Green IT)

Green computing is the study and practice of using computing resources efficiently. The primary objective of such a program is to account for the triple bottom line an expanded spectrum of values and criteria for measuring organizational (and societal) success. The goals are similar to green chemistry; reduce the use of hazardous materials, maximize energy efficiency during the product's lifetime, and promote recyclability or biodegradability of defunct products and factory waste.

Contents [hide] 1 Origins 2 Regulations and industry initiatives 2.1 Government 2.2 Industry 3 Approaches to green computing 3.1 Virtualization 3.2 Power management 3.2.1 Power supply 3.2.2 Storage 3.2.3 Video Card 3.2.4 Display 3.3 Materials recycling 3.4 Telecommuting 4 See also 5 References 6 External links 6.1 How-to articles 6.2 Organizations 6.3 Software

Peopl e Planet Profit

≡ greentechmedia:

Green IT Taxonomy

Source: GreenTechMedia

Carbon Emissions - Information Technology

Information and communication technologies

Carbon Emissions - Information Technology

Definitions:

PIL

Transformation of IT – direct, first-order impacts related to the manufacture, use and disposition of physical ICT assets and ICT related services, e.g., more energy efficient servers and PCs. The **"2%"**

Transformation by IT - second order impacts with ICT's enabling role, e.g., videoconferencing and collaboration (impact on travel). The **"98%"**

Rank	All-around Performance	Transformation by IT	Transformation of IT	Internal En vironmental Performance	Supply Chain
1	IBM	British Telecom	Fujitsu	Fujitsu	HP
2	Fujitsu	IBM	HP	British Telecom	IBM
3	HP	Cisco	IBM	IBM	British Telecom
4	Cisco Systems	Ericsson	Cisco Systems	HP	Cisco Systems
5	British Telecom	SAP	Alcatel-Lucent	Ericsson	Ericsson
6	Ericsson	HP	Ericsson	Dell	Fujitsu
7	Alcatel-Lucent	Fujitsu	Sun Microsystems	Cisco	Sun Microsystems
8	SAP	Alcate⊢Lucent	Xerox	Alcatel-Lucent	Alcatel-Lucent
9	Dell	Accenture	Dell	Xerox	Lenovo
10	Xerox	Wipro	British Telecom	Wipro	Deutsche Telekom
11	Sun Microsystems	Microsoft	Microsoft	Deutsche Telekom	Microsoft
12	Deutsche Telekom	Deutsche Telekom	Deutsche Telekom	Sun Microsystems	Dell
13	Microsoft	Xerox	SAP	тся	Xerox
14	Wipro	Dell	CSC	SAP	Wipro
15	Accenture	Verizon	Wipro	Lenovo	Verizon
16	CSC	CSC	Lenovo	Microsoft	
17	Lenovo	Sun Microsystems	Accenture	csc	
18	TCS	TCS	Verizon	Accenture	
19	Verizon	Lenovo	TCS	Verizon	

Corporate Purchases of "Green" Electricity

Annual Green Power Usage (kWh)	GP % of Total Electricity Use*	Organization Type	Providers (listed in descending order by kWh supplied to Partner)	Green Power Resources
1. Intel Corpora	ntion			
1,433,200,000	51%	Information Technology	Sterling Planet°, On-site Generation, PNM	Biogas, Biomass, Geothermal, Small-hydro, Solar, Wind
2. Kohl's Depar	tment Store	<u>s</u>		
1,367,376,000	100%	Retail	3Degrees°, WM Renewable Energy°, On-site Generation, Sacramento Municipal Utility District°, City of Dover	Biogas, Biomass, Small-hydro, Solar, Wind
3. Whole Foods	Market			
817,657,623	100%	Retail	3Degrees°, Austin Energy, On-site Generation	Solar, Wind
4. <u>Starbucks</u>				
573,432,000	55%	Restaurants & Food Srvcs.	Nexant ^o , 3Degrees ^o	Wind
5. <u>Commonwea</u>	Ith of Penns	<u>evivania</u>	Densurable Chairs France C	Mariana
500,000,000 6. <u>City of Houst</u>	50% on, TX	Govt. (State)	Renewable Choice Energy®	Various
438,000,000	34%	Govt. (Local, Municipal)	Reliant Energy	Wind
7. Dell Inc.				
431,058,000	129%	Information Technology	NextEra Energy Resources°, TXU Energy°, Austin Energy, Oklahoma Gas & Electric, Idaho Power°, On-site Generation	Biogas, Solar, Wind
8. <u>Johnson & Jo</u>	<u>hnson</u>			
416,510,688	39%	Health Care	3Degrees°, NextEra Energy Resources°, GDF Suez Energy Resources NA°, Sempra Energy°, Liberty Power°, On- site Generation, PNM	Biomass, Solar, Wind
9. U.S. Air Force	2			
339,660,392	4%	Govt. (Federal)	TransAlta Energy Marketing, Sterling Planet ^o , On-site Generation, Oklahoma Gas & Electric, Colorado Springs Utilities, Rocky Mountain Power ^o , Champion Energy Services, Georgia Power ^o , Nexant, Xcel Energy ^o , PowerSouth Energy	Biogas, Biomass, Solar, Wind
			Cooperative, Hess Energy Marketing°, Minnkota Power Cooperative, Western Farmers Electric Cooperative, El Paso Electric, Rocky Mountain	i

Generation Cooperative

P'. I.

Annual Green Power Usage (kWh)	GP % of Total Electricity Use*	Organization Type	Providers (listed in descending order by kWh supplied to Partner)	Green Power Resources
10. <u>City of Dalla</u>	as, TX			
333,659,840	40%	Govt. (Local, Municipal)	GDF Suez Energy Resources NA	Wind
11. HSBC North	America			
300,000,000	112%	Banking & Fin. Srvcs.	NextEra Energy Resources ^o	Wind
12. Cisco Syste	ms, Inc.			
270,209,528	29%	Information Technology	Sterling Planet°, Austin Energy, AmerenUE°	Biomass, Wind
13. Wal-Mart S	tores, Inc. /	California and Texa	as Facilities	
263,533,433	8%	Retail	Duke Energy, On-site Generation	Biogas, Solar, Wind
14. U.S. Enviror	nmental Pro	tection Agency		
262,100,000	100%	Govt. (Federal)	3Degrees°, NextEra Energy Resources, Bonneville Environmental Foundation°, Pacific Power°, On-site Generation, Minnesota Power	Biogas, Biomass, Solar, Wind
15. District of C	<u>Columbia</u>			
244,267,000	50%	Govt. (Local, Municipal)	Washington Gas Energy Services°	Wind
16. <u>TD Bank, N</u>	А.			
240,333,272	100%	Banking & Fin. Srvcs.	Community Energy°, Renewable Choice Energy°	Wind
17. BNY Mellon				
229,500,000	77%	Banking & Fin. Srvcs.	NextEra Energy Resources°, Pepco Energy Services°	Wind
18. City of Chic	ago, IL			
215,000,000	20%	Govt. (Local, Municipal)	Renewable Choice Energy°	Wind
19. University	of Pennsylva	<u>mia</u>		
201,841,600	48%	Education (Higher)	Community Energy ^o , On-site Generation	Solar, Wind
20. <u>BD</u>				
200,631,536	38%	Health Care	NextEra Energy Resources°, Rocky Mountain Power° Generation, Oklahoma Gas & Electric, Colorado Springs	Wind
339,660,392	4%	Govt. (Federal)	Utilities, Rocky Mountain Power°, Champion Energy Services, Georgia Power°, Nexant, Xcel Energy°, PowerSouth Energy	Solar, Wind

Technology Trends

Figure 1. Hype Cycle for Emerging Technologies, 2008

visibility

Green IT involves the optimal use of information and communication technology (ICT) for managing the

Technology Trends

Technology Trends

Source: Hype Cycle for Sustainability and Green IT, Gartner, July 29. 2010

Economizer Hours for a Data Center

SP/ 1.

Orange County Data Center: Green IT Assessment

Source: Hewlett Packard's Converged Infrastructure Maturity Model, Orange County Data Center, July 2010

Macroeconomic Views

Drivers for Sustainability

Drivers: Regulations versus Consumer Advantage

Energy Star

Energy Star is an international standard for energy efficient consumer products. It was first created as a United States government program in 1992, but Australia, Canada, Japan, New Zealand, Taiwan and the European Union have also adopted the program. Devices carrying the Energy Star logo, such as computer products and peripherals, kitchen appliances, buildings and other products, save 20%-30% on average.^[1] However, many European-targeted products are labeled using a different standard, TCO Certification, a combined energy usage and ergonomics rating from the Swedish Confederation of Professional Employees (TCO) instead of Energy Star.

Contents [hide]

1 History

- 2 Specifications
 - 2.1 Appliances
 - 2.2 Heating and Cooling Systems
 - 2.3 Home Electronics

2.4 Lighting

- 2.5 Home office
- 2.6 New Homes

3 Energy Performance Ratings

3.1 Buildings

3.2 Industrial Facilities

- 3.3 Other Facilities
- 4 Controversies
- 5 See also
- 6 References
- 7 External links

Next Big Thing?

Lighting

[edit]

The ENERGY STAR is awarded to only certain bulbs that meet strict efficiency, quality, and lifetime criteria.

ENERGY STAR qualified fluorescent lighting uses 75% less energy and lasts up to ten times longer than normal incandescent lights.

ENERGY STAR Qualified Light Emitting Diode (LED) Lighting:

- Reduces energy costs uses at least 75% less energy than incandescent lighting, saving on operating expenses.
- Reduces maintenance costs lasts 35 to 50 times longer than incandescent lighting and about 2 to 5 times longer than fluorescent lighting. No bulb-replacements, no ladders, no ongoing disposal program.
- Reduces cooling costs LEDs produce very little heat.
- Is guaranteed comes with a minimum three-year warranty far beyond the industry standard.
- Offers convenient features available with dimming on some indoor models and automatic daylight shut-off and motion sensors on some outdoor models.
- Is durable won't break like a bulb.

SMART 2020 US Addendum: Four main ICT Opportunities:

	Savings	Savings by 2020	
	MMT of CO ₂	Dollars - Billions -	
1. Smart Grid	230 – 480	\$15 – 35	
2. Road Transportation	240 - 440	65 – 115	
3. Smart Buildings	270 – 360	40 – 50	
4. Travel Substitution	70 – 130	20 - 40	

Notes: 1. Baseline in US is 5,980 MMT (2007)

2. Savings are computed at \$0.09 / kWh

Breakdown of ICT-enabled CO₂ reduction potential

1. Multiple levers contribute to the reduction potentials. The midpoint was used to obtain the percentage break-downs. See appendix for details.

Figure 8: Buildings: U.S. impact 2020

1. Multiple levers contribute to the reduction potentials. The mid-point was used to obtain the percentage break-downs.

2. Other includes Ventilation on Demand, Intelligent Commissioning and Benchmarking and Building Recommissioning

Note: See appendices for baseline, adoption, and reduction assumptions

Source: EIA Annual Energy Outlook 2008, BCG analysis

Energy Efficiency - History

Normalized and indexed, 1980 = 100%*

Potential Energy Reductions

End-use energy, trillion BTUs The exhibit displays energy consumption in 2020 BAU Commercial buildings consume 1,580 associated with various consumption 1,570 building types in the 20% of the total energy consumed commercial sector with and in the US and offers 25% of the -28% Reduction -30% without energy efficiency potential efficiency potential across 87 measures implemented. billion square feet of floor space. 840 BAU = Business as Usual -30% 570 Efficient 550 1,130 1,100 510 490 25% consumption 480 480 -24 -23% -31 280 590 -14% 430 400 390 370 330 330 240 Office Retail Edu-Lodging Health Assem-Food Food Other Warecation bly sales care service house

NPV Potential - Market Segments

P'I.

The bubbles depict the NPV-positive efficiency potential in each cluster. measured in primary energy, with the area of the circle proportional to the potential. The position of the bubble's center on the horizontal axis indicates the cost of capturing this potential with the measures modeled in this report (excluding program costs) in dollars per million BTUs per year. The center's position on the vertical axis represents the weighted average of the national experience with the approaches outlined for the cluster.

Energy Efficiency - Consulting Analysis

Reference

Technology

2035

Efficiency improvements could lower projected consumption growth

Figure 46. Commercial delivered energy consumption per capita in four cases, 1990-2035 (index, 1990 = 1)

Electricity leads expected growth in commercial energy use

Figure 47. Average annual growth rates for selected electricity end uses in the commercial sector, 2008-2035 (percent per year)

Notes: 1. Reference case is 4.8% lower than 2009

2008

2015

- 2. High Technology case is 12.5% lower than Reference case
- 3. Best Available Technology case is 17.5 % lower than Reference case

2025

- Office Equipment growth is less than ½ floor space (EnergyStar)
- Other Office Equipment includes servers and mainframe
- Other Miscellaneous includes video displays and medical devices

1.1

0.8

1990

2000

Energy Efficiency - Consulting Analysis

Cisco - use less

CISCO CONNECTED WORKPLACE

Table 1. Cost Savings from the Shared Workspace

Cost Category	Percent Savings
Real estate rent: Accommodating more people in the same amount of space	37%
Construction: Building a smaller space than typically required for 140 employees	42%
Workplace services: Reducing utilities and maintenance costs, and nearly eliminating the costs of moves, adds, and changes for workspaces through the use of flexible furniture settings	37%
Furniture: Purchasing less (and slightly less expensive) furniture than typically used in cubicles	50%
IT capital spend: Spending less on switches and switch ports	40%
Cabling: Reducing the number of wired IP cables required per workspace	60%
Equipment room space: Racking fewer switches because of wireless infrastructure	50%

COSTS:

Design & Visual Communication	\$11.70	10%
Construction	59.67	51%
Technology	21.06	18%
Furniture	17.55	15%
Change Management	<u>7.02</u>	<u>6%</u>
Total	\$ <u>117.00</u>	<u>100</u> %

Buildings & Data Centers

US Green Building Council

The U.S. Green Building Council (USGBC) is a 501 c3 non-profit organization committed to expanding sustainable building practices. USGBC is composed of more than 19,500 organizations from across the building industry that are working to advance structures that are environmentally responsible, profitable, and healthy places to live and work. Members includes building owners and end-users, real estate developers, facility managers, architects, designers, engineers, general contractors, subcontractors, product and building system manufacturers, government agencies, and nonprofits.

What is LEED[®]?

The Leadership in Energy and Environmental Design (LEED) Green Building Rating System[™] encourages and accelerates global adoption of sustainable green building and development practices through the creation and implementation of universally understood and accepted tools and performance criteria.

HOMES NEIGHBORHOOD DEVELOPMENT (IN PILOT) COMMERCIAL INTERIORS CORE & SHELL NEW CONSTRUCTION SCHOOLS, HEALTHCARE, RETAIL DESIGN CONSTRUCTION OPERATIONS

LEED Certification	Possible Points
Sustainable Sites	14
Water Efficiency	5
Energy & Atmosphere	17
Materials & Resources	13
Indoor Environmental Quality	15
Innovation & Design Process	<u>5</u>
Total	69
Platinum	52 – 69
Gold	39 – 51
Silver	33 - 38
Certified	26 – 32

Source: Green Building Rating System for New Construction & Major Renovations

Greening the Building Codes

Data Centers

Do CIOs need to understand Real Estate?

CIOs Called Clueless about Extra Costs

IT managers tend to forget about construction and operating costs when they pitch projects, an expert says

David M. Katz, CFO.com | US September 27, 2010

To avoid big overspending by chief information officers, CFOs should order forensic-accounting audits of large information-technology projects, an advocate for data-center efficiency says....

In one case, says Brill, a company decided to invest \$22 million in a project to install new data servers. Based on that figure, which was supplied by the IT department, senior management thought the project would yield a "very positive" return on investment, he says. But the tech staffers were unaware that \$54 million would be required to install the power and cooling capacity to run the servers and that an estimated \$32 million would be needed to operate the servers over their lifetime. As a result, says Brill, they failed to include those extra costs in their pitch. (Also, the overlooked \$86 million was accounted for as a cost to the organization's real estate department. That helped make the total cost of the project less than transparent, says Brill.)

A big problem stems from a breakdown in the benefits of Moore's Law, which says that the number of transistors that can be placed cheaply on a computer chip will double every two years. Energy efficiency, by contrast, is rising by only a factor of 1.5, says Brill. To fill the gap, data-intensive companies will have to buy scads more electricity to power their data centers. Indeed, data-center consumption has jumped from 1% of total U.S. electricity use in 2000 to 3% this year, Uptime estimates.

Green Data Center

United States Environmental Protection Agency

Energy Star: Buildings & Data Centers

Energy Star for Buildings: Top 25% in Building Category

February 8, 2010—The U.S. Environmental Protection Agency (EPA) has announced that in 2009, EPA's <u>Energy Star Leaders</u> prevented the equivalent of more than 220,000 metric tons of carbon dioxide and saved more than \$48 million across their commercial building portfolios. These savings have quadrupled since 2008 and represent the single greatest year of savings since EPA recognized the first Energy Star Leaders in 2004.

Energy Star for Data Centers:

Summary: The voluntary **National Data Center Energy Efficiency Information Program** has been initiated. The Program coordinates a wide variety of activities from the DOE Industrial Technologies Program Save Energy Now initiative, the DOE Federal Energy Management Program (FEMP), and the EPA ENERGY STAR program. The program is engaging numerous industry stakeholders who are developing and deploying a variety of tools and informational resources to assist data center operators in their efforts to reduce energy consumption in their facilities. These groups include, for example: 7 x 24 Exchange, AFCOM, American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), Critical Facilities Roundtable, Information Technology Industry Council (ITIC), Silicon Valley Leadership Group, The Green Grid Association, and The Uptime Institute.

Data Centers: Emerging Measurements

- DCiE "Data Center Infrastructure Efficiency" is a metric used to determine the energy efficiency of a data center
- PUE "Power Usage Effectiveness" is the reciprocal of DCiE; the typical data center has an average PUE of 2.5; this means that for every 2.5 watts in at the utility meter, only one watt is delivered out to the IT load. It is estimated that most data centers could achieve 1.6 (36% improvement)

Data Centers: Sample Supporters of PUE

Vendor	Vendor Product	General Market Position	PUE Posture	Qualifiers	
HP	Computer servers	Largest server vendor with ~32% share of market	Claims PUE of 1.07 for its POD	Worries there is little consistency in the way PUE is currently measured	
Dell	Computer servers	Second largest server vendor with ~22% market share	Claims the highest performance per watt.	PUE and DCiE can be misleading, because they are not designed to capture actual productive work being performed	
IBM	Computer servers	Third largest server vendor with ~22%	WebSphere sMash Software monitoring tool	Energy "dashboard" reports PUE and DCiE metrics	
Eaton	Power distribution systems (including UPS supplies)	Self-described power management company with \$5.9 billion in electrical distribution	Promotes power supply and power distribution efficiency.	Partners with IBM on blade servers PUE is a checklist item on "Power Xpert Reporting v. 2"	
Emerson Network Power	Power distribution	Self-described power management company with \$5.4 billion in electrical distribution	Avocent subsidiary promotes data center management Software	Management tools model hot/cold aisle temperatures and power consumption	
American Power Conversion (APC)	Infrastructure for computer centers	A 2.1-billion euro subsidiary of a 15.8 billion euro power distribution company	Promotes Intelligent energy management with PUE at facility level	InfraStruXure Energy Efficiency application measures kWh consumption "down to the rack level"	
Google	Internet service provider	Largest online search tool	Publishes quarterly PUE details. The latest rating is 1.15	Uses highly efficient voltage regulators, but onboard fans and coolers will add more PUE weighting to the IT equipment, by lowering the ratio	
PUE = Power Utilization Effectiveness; DCiE = Data Center infrastructure Efficiency; POD = Performance Optimized Data Center, UPS = uninterruptible					

P'. **I**.

power supply

Source: "Market Trends: Sustainability and Cost Savings Objectives for Large Data Centers Will Require Tighter Efficiency Metrics", Gartner June 2010

Data Center Spending

Data Center Spending

Cooling is half the battle

Data Center Initiatives

Fig 3 – Technology Enablers

Critical Gaps: Efficient Data Center Design

Need to consolidate industry best practices

 Integrated energy management (standards, metrics, etc.) Design standard gap – there is no universally recognized nationwide industry standard for energy efficient data centers. What's being measured and how?

- Facilities/IT interface and cooperation
- Pilot projects and test centers reference account savings
- Charge back based on power: getting real costs allocated correctly

•••••

P

- Application layer power controls/measurement
- There is no mpg rating ••••••
- Permanent monitoring IT and utilities. Design and operation optimization
- Knowledge about what you can do (to improve energy efficiency). Need to build knowledge and skills within the company
- List of key questions C-level project managers should be asking staff •••
- Standardized IT work output metric, built-in to equipment service processor •••
- Industry is driven by vendors and not end users. Need end user engagement •••
- Convergence of IT and facilities organization/technologies
- Market development (mid-stream) IT and facilities
- Presenting information and resources back to industry ••
- Facilities maintenance education ••
- Lack of energy management standards for data centers to adopt and be certified as meeting standards ••
- Over design/under design actual redundancy required vs. infrastructure designed impact on efficiency
- Triple bottom line business goals and mission •
- Incentives for implementing energy savings technologies such as DC power

- Lack of top management commitment and prioritization - way to make monetary reward obvious to senior executives
- Lack of financial analytics
- Disconnect between who uses the energy and who pays for it (as it relates to incentives)
- Disconnect between fund allocation for first cost vs. operating cost
- Lack off information for a compelling business case
- No correlation between energy efficiency and reliability/availability
- Incentivize the risk holder •••
- Figure out what motivates decision-makers (what rewards matter) •••
- True cost of end-user service, i.e., You Tube, Yahoo.com, hotmail.com, My Space. True burden to the beneficiary - flipside to reward departments, public •••
- Federal and state policy/incentive information
- Broad based will to optimize priority ••
- Carbon credits ••
- Incentive not high enough ••
- Peak demand (kW) vs. energy savings (kWh)
- Management involvement and leadership of data center costs and performance ••
- How persistent are the rewarded savings? ••
- Facts tell stories sell, we need to market .
- Consistency among various industry recognition programs - Leed, Energy Star, Uptime
- Why? What's in it for me?
- Career risk •
- (• = MOST CRITICAL GAP)

- Link facility manager with IT managers
- Wrong stakeholders what's in it for me (CFO level)
- Pain (lack of pain)
- User knowledge in energy efficient technology implementation and consumption management
- Transparency (vendor influenced incentives)
- Reach consensus as a community
- People are too busy
- Lack of technical knowledge
- Simple understandable incentives
- Need to assess risk
- Make profits the ultimate reward
- Design program on technology, control, or behavior basis or combo
- Reward a product or system both
- Utilities don't have standards to determine absolute energy savings, i.e., what is the right baseline
- Timing of incentives
- Persistent energy incentive programs
- National monetary award recognizing top 20 data centers for efficiency design or efficiency improvements
- Reconciling capacity and performance growth rates with energy costs
- Visible comparisons to peers/competitors benchmarks
- Tracking fine grained energy per server and service

Source: National Data Center Energy Workshop Strategy Workshop, EPA, Sep. 2008

The Coming Wave

Real Estate & IT Convergence

Technology, IT Technology and Building Controls Converge

Technology, IT Technology and Building Controls Converge

Convergence: The Building Information Network

Convergence: Cisco Mediator (Richards Zeta)

Building Systems

Access information anywhere

Mediator collects data from the building, IT, energy supply, and energy demand systems, which use different protocols and are otherwise unable to communicate.. Mediator product is an extension to the IP Network.

Applications that Lower Costs

Energy Mgmt

Facility Mgmt

Fault Analysis

Tenant Services

Source: Cisco Connected Real Estate, 2010

Convergence: Operational Technology & IT

Source: "Operational Technology Convergence With IT: Definitions", Gartner, July 2010

Convergence: Projected IP based BCS

P'I.

Forecast World Growth of Intelligent Building Control Systems and Penetration of IP-Based Solutions Total IBC(s) World Sales – Approx. 6.5% Growth

Building Automation System Revenue by Region

World Market, Forecast: 2008 to 2015

Convergence: Some Market Evidence

Manufacturing or Electronics Company Acquisitions

Technology Company Acquisitions

=> "Middleware"

Note: Both Microsoft and Google announced energy management applications for consumers in 2009

Example

Technology	Benefit	Comment
PV panels	Direct emission and energy reduction	1,452 solar PV panels make up one of the largest arrays in Wisconsin, delivering up to 250 kW of emission-free electricity to the site.
Geothermal heat pumps	Direct emission and energy reduction	272 boreholes source natural waters for heating and cooling applications.
Under-floor heating	Indirect (energy reduction)	Produces efficient and uniform heating.
Skylights and bigger windows	Indirect (reduced lighting and improved working environment)	As well as reducing energy consumption, natural lighting additionally provides for a better working environment.
Rainwater collection	Indirect (reduced municipal water consumption)	A 30,000-gallon cistern captures rainwater for "brown water" applications, such as irrigation and flush toilets, reducing potable water consumption for new bathroom fixtures by 77% or 595,000 gallons. Collection included a parking-lot surface with permeable pavers.
Solar thermal	Direct (reduced energy and emissions)	A 1,330-square-foot solar thermal installation on the roof annually saves an estimated 2.8 kilo therms* of energy.
Building information management system	Indirect (collection, analysis and optimization of building subsystems)	There was coordination of all activities across the facilities as well as provision of a single point of access to performance indicators and control of subsystems using the BIM system Metasys.

* Therm (U.S.) = 100,000 BTUs (105 M Joules, 29 kWh)

"... it can be estimated that the annual electricity consumption demand of the York and HQ buildings are 21.9 and 6.3 kWh/sq. ft. per year, respectively. In other words, energy-efficiency retrofit demonstrates about a **71% improvement** on a "business as usual," conventional-building consumption pattern"

Questions & Answers

joel.manfredo@ceoit.ocgov.com

714-834-7122